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Abstract. Context-awareness is an essential requirement in crafting rec-
ommender systems that provide serendipity, i.e. “pleasant surprises”, in-
dependently of human command. These solutions must be able to infer
interactions based on data from sensors and recognised activities in order
to infer what is useful information and when to deliver it. For that, we
are devising advanced models of context inference based on the analysis
of users’ signals during everyday activities. In this paper, we present a
proof-of-concept platform that allows for the application of techniques of
deep learning and context analytics to derive patterns in spatio-temporal
context signals. We call this composition Big Context. We argue that
by understanding how people and things are connected, one can devise
novel forms of interactions that provide a more pleasant user experience.
In this work, we introduce our method and platform, and illustrate some
of the possible techniques using a prototype application that provides
serendipitous recommendations.

1 Introduction

Serendipitous interfaces are an emerging paradigm in user experience. The idea
is to create a self-governing recommender system that provides relevant infor-
mation [18] as a “pleasant surprise” in the absence of intentional commands. Ex-
amples of such interfaces are: SAMSUNG S-Health1, when it counts how many
steps a user walked during the day and offers a congratulatory notification once
a (supposedly healthy) threshold has been surpassed, and; Google Now2, when it
keeps track of your location and daily activities to provide contextualised advise.
These sort of systems encompass: (i) sensors that collect multi-dimensional data;
(ii) mechanisms of context inference in mobile computing; and (iii) a deliberation
process to infer what is useful information and when to deliver it.

We hypothesise that it is possible to create inference models that classify
and understand user behaviour based on analysis of events emitted by the han-
dling of everyday things, such as smart phones, Smart TVs, fridges, and air
conditioning. We investigate how to apply deep learning and context analytics

1 http://www.samsung.com/global/microsite/galaxys4/lifecare.html#page=

shealth
2 http://www.google.com/landing/now



to derive patterns and correlations in spatiotemporal context signals — we call
this configuration Big Context. The leading questions in our investigation are:

– How to infer meaningful context events out of multi-dimension signals col-
lected from a variety of sensors?

– How to reason explanation about facts or incidents with multi-aspectual
proofs based on pre-classified events?

– How to design deliberation mechanisms aiming at context support and pro-
active interactions?

A brief illustration scenario is as follows. Let us assume that smart phones
are instrumented to emit signals si containing information such as time, loca-
tion, type of object, type of interaction and parameters of the interaction, which
are captured and stored in repositories Su for each user u. Then, sequences of
signals S ⊆ Su can be classified as context events ei by applying techniques of
sequence labelling algorithms, such as a Hidden Markov Model [4] and Condi-
tional Random Fields (CRF) [12]. For instance, to classify sequences s1, . . . , sn
as car parking signature, stored in a spatiotemporal repository E. Moreover,
techniques for learning probabilistic models for collections of discrete data (e.g.
Latent Dirichlet Allocation [1]) are applied to identify patterns from the excess
of spatiotemporal events that relate to salient contextual situations.

We expect to understand the context and deliberate to provide a “pleasant
surprise”. In this case, by informing that there is a high possibility that a parking
space is to be freed up soon (around a area). The system infers this information
by classifying the social behaviour upon historic context events from E. Different
scenarios may be drawn up, considering signals incoming from alternative ob-
jects and application domains, such as the provision of contextualised education
material, introduced in [10].

In what follows, we introduce Big Context and related concepts, present the
architecture of the “Sensible Lives Platform”, and propose a proof-of-concept
demonstration.

2 On Big Context and Related Concepts

Dey (2001) [3] characterises context in the following way: “Context is any infor-
mation that can be used to characterise the situation of an entity. An entity is
a person, place or object that is considered relevant to the interaction between
a user and an application, including the user and the application themselves.”
Current approaches to context acquisition tend to focus on a bridge between the
high-level context descriptions in applications and the low-level data that is col-
lected from sensors [6, 11, 20]. We claim that current methods are insufficient to
handle highly diversified views that can be derived from the multitude of sensors
present on everyday devices. The ACE system [15] is nearest to our work in this
sense, because it discovers the relations between contexts. We will discuss this
further in Section 3.3, where we discuss our approach to the semantic modelling
of contexts.



We are researching alternative techniques for multi-dimensional context anal-
ysis. We aim at new models to recognise patterns in data and then match these
to contextual situations without previous understanding about these patterns or
the configuration of analysis rules. We call this configuration Big Context.

This development seeks a new kind of context support mechanism that pro-
vides highly adaptive context inference, even to unanticipated situations where
emerging patterns can be discovered. It will support real-time context-aware in-
ference towards proactive deliberation and serendipity. Insofar as we know, there
is only one similar platform, CQue [16], which aims at integrating information
from various different classifiers in order to improve accuracy, reduce battery
usage and provide better privacy. The main distinction is that CQue is intended
to run on the mobile phone, and thus aims mainly at the detection of contexts
that can be learned through analysis of a single user’s information. By running
the Big Context platform as a cloud-based service, we are able to leverage multi-
ple users’ contextual information to infer social context, as well as combine data
from many users to better train classifiers, allowing us to recognise the occurence
of rare events.

Figure 1 depicts the architecture of the Big Context platform. We integrate
multiple different learning techniques, which we will describe in the next sec-
tion, in an encompassing framework for collecting and reasoning upon multi-
dimensional sensors. The composition includes interface support for deliberation
mechanisms aiming at context support and pro-active interactions. It operates
as follows:

– Input Interface receives signals captured by sensors in everyday life’s devices.
– Noise Filtering and Fusion pre-processes this data eliminating entries that

are either repetitive or not relevant; these signals are stored in a short-term
repository for future reference.

– Probabilistic Activity Recognition analyses a sequence of signals, identify-
ing the impact of each signal upon the sequence given the observations;
recognised activity patterns are stored in a long-term repository for historic
context analysis.

– Probabilistic Situation Modelling implements techniques of context mod-
elling based on generative probabilistic models for collections of discrete
data; recognised situation patterns are stored in a long-term repository for
historic context analysis.

– Semantic Context Classification provides support to reason about facts or
incidents with multi-aspectual proofs, using configurable Context Analysis
Rules and Semantic Rules. The generated entries are stored in a long-term
repository for historic context analysis.

– Context Query Language provides a query language to access the informa-
tion stored in the four repositories being populated by the methods afore-
mentioned.

The service can be executed in a combination between local- and server-based
processing. For instance, in the prototype being presented in the next section,



Fig. 1. Architecture of Big Context



we execute the methods for noise filtering and probabilistic activity recognition
on the mobile device, whilst executing the information sharing services on the
server.

This composition supports external applications to query for shared context
information band intertwine local processing and global context. We claim that
this setup greatly facilitates the implementation of serendipity, providing recog-
nition of surrounding to support automatic processing.

Next we describe the main elements that compose this mechanism. Through-
out this paper, we will demonstrate the concepts with an application that recog-
nises parking spaces. We describe the algorithms we use for this specific situation,
and briefly survey some of the other methods that can be used for the task at
hand. The mobile app and its functioning is described in Section 4.

3 Context Recognition Methods

3.1 Activity recognition

Activity features are not obvious when collecting data from multi-dimensional
sensors. In order to categorise contextual patterns we need to identify powerful
distinctive features out of data that is not easily explainable. Activity recognition
is a temporal classification problem: the application must analyse a sequence
of signals, identifying the impact of each signal upon the sequence given the
observations [19].

For instance, let us consider the method for detecting car parking signa-
tures from observed movements of user’s device captured through sensors like
accelerometer and gyroscope. The application collects and indexes timestamped
signals s0, . . . , st over a period of time t, and classifies discrete features to fa-
cilitate the machine learning. That is, features are considered together within
a timeframe forming linear sequence of events e0, . . . , et, which represent dis-
crete words wi in a domain; for instance, distinct movements during car parking
movement such as “reverse acceleration” (w1), “slight right turn” (w2), “slight
left turn” (w3), and so on.

Out of the various context modelling tasks, activity recognition is probably
the one that has received the most attention so far. There are many different
works focusing on recognising many different activities, using various different
sensors. It is beyond the scope of this work to perform a sufficient survey, for
which we refer to Mannini and Sabatini [14] regarding activity recognition using
inertial sensors, and Poppe [17] for vision-based activity recognition.

A majority of the methods for recognising activity based on IMU sensor
data, like the data we collect from drivers, use a method based on graphical
models. We follow suit, and employ Conditional Random Fields (CRF) [12], one
of the methods that places the least assumptions on the conditional indepen-
dence relationship between variables. Nevertheless, an assumption underlying
all graphical models is that the labels have the Markov property Pr{et+1 =



e′, st+1 = s|et, st}, that is the conditional probability distribution of future la-
bels depends only upon the present labels, not on the sequence of events ei and
signals sj that preceded it.

The aim of using CRF is to model the joint probability distribution for all
the labels, given the observed features. It models this conditional probability
distribution of the labels given the features as follows:

Pr(E|S) =
1

Z

t∏
i=0

exp
( K∑
k=1

θkfk(ei−1, ei, si)
)
,

where Z is a normalisation factor, θk ∈ R are parameters of the model and fk
is a real-valued feature function for each of the K features we are interested in,
such as w1, w2 and w3 of the above example.

This technique yields the most likely explanation for the sequence of events.
That is, it computes the joint probability of the entire sequence of hidden states
that generated a particular sequence of observations within a distinct feature,
such as “parking in signature”, “parking out signature”, or “non parking signa-
ture”. Then, we can form a repository of historical activity patterns E where each
record contains timestamp, location, user identification and distinct feature3 by
capturing the information from multiple users over time.

3.2 Situation modelling

We expect that patterns also emerge at a global context level considering the
relation between events across multiple users. These patterns constitute the sit-
uation a user is in, and situation modelling is generally approached in two ways:
using a probabilistic method, or a rule-based semantic method. The latter is
problematic, as it requires a prior description of the possible situations that we
wish to model, whereas the former can be generative and discover novel situa-
tions. While the application of such methods to situation modelling is relatively
new [5, 13], similar methods have a rich history in understanding text. Exam-
ples of this type of method are Latent Dirichlet Allocation (LDA) [1, 9], Topical
N-gram Models [21] and Beta Process Hidden Markov Models [7, 8].

These techniques allows us to classify and predict situations that involve
subsets of context events and address questions like: (i) what is the probability
that a frequency of context events over a period of time and region represents
a situation x, such as a user looking for a parking space (x1) or a user walking
towards his car (x2); or (ii) what is the probability of situation x being caused
by a (subset of) context events E?

Currently, we do not have enough data to perform this kind of modelling in
the parking place scenario, but when we gather more data we propose to use
LDA, one of the most common generative probabilistic methods in topic mod-
elling, to discern the various situations we are interested in. The LDA method

3 Note: for privacy concerns, one can prevent to store user identification on E; however,
this approach limits the possibility of individual situation analysis at global context
level.



operates as follows. The set ER,T ⊆ E represents the spatiotemporal area of
events to be considered, over a period of time T and within a spatial region R.
We define the following notation:

K denotes the number of situational descriptors;
M specifies the number of areas being classified;
N is the number of events per area;
α is the parameter of the Dirichlet prior on the per-area distribution of

situations;
β is the parameter of the Dirichlet prior on the per-situation distribution

of events;
θm is the situation distribution for each area ERm,Tm

;
φx is the distribution of context events for situation x;
emn is the nth context event in the mth area, and;
xmn is the situation that emn belongs to.
Then the joint probability distribution we are interested in is (full explanation

at [1]):

Pr(E,X, θ|α, β) =

K∏
k=1

Pr(φk|β)

×
M∏

m=1

Pr(θm|α)

N∏
n=1

Pr(xmn|θm)Pr(emn|φxmn
)

The method allows for the inference of various different probabilities, allowing
us to answer questions like the ones above. For instance, an event might be the
user driving slowly. In isolation, this activity could mean that he is lost, stuck
in traffic, or searching for a parking space. However, in conjunction with other
events the situation becomes clear. For instance, if many other users are driving
slowly in the same area, the situation is most likely a traffic jam, while if this is
a recurrent pattern for the user, in isolation, over various days, he is most likely
to be searching for a parking space.

3.3 Semantic context classification

Patterns also emerge at a social level where people use their devices differently
depending on their social environment. For that, rule-based classification meth-
ods provide a powerful tool to reason explanation about facts or incidents with
multi-aspectual proofs based on pre-classified events. Moreover, these methods
allow for the composition of context intelligence through the discovery of new
facts and rules/patterns from networked context facts by exploring causality
residing inside the relation between events, as presented in [2].

Consider the question: What is the possibility that a parking space is to be
freed up soon around this area?. The reasoning implies the analysis of historical
behaviour and other parameters of the social settings. For instance, let us assume
the semantics rules in the knowledge space that represent the number of parking



spaces available, such as:“parking at position”, “leaving and entering parking”,
“startend of office hours”, “parking spaces become available or unavailable”, and
so on. Then, we can compose logic formulae between the elements as:

who am I(?U)
local query(current location(?L))
server query(parking spaces(?Y,L))
possible office arrival time(U, ?TO, ?Θx)
my office location(U, ?LO)
possible parking availability(LO, TO, ?Z, ?Θz)

Thus, the reasoning can infer the possibility of finding parking places at
my office’s location around the time I am about to arrive at my office. In this
reasoning, it estimates the possible office arrival time TO with a certainty Θx

e.g. based on historical information and/or driving information. it also infers the
office location LO and thus is able to estimate the possible parking availability
Z near that area with a certainty factor Θz. Intuitively, the more networked
elements are being considered for the assertion, the more likely the prediction
will align with observable features.

The use of a semantic layer in context-aware computing is not novel. As
mentioned in the previous section, it is often used in situation modelling, but
the use most similar to our proposal is found in ACE [15]. Their principal aim is
to improve energy efficiency by recognising when sensors are needed, and when
the context can be inferred through logical rules. For instance, if the user is
driving (known because he is tethered to his hands-free set), then he is not at
home, and thus there is no need to use the GPS to discover whether he is at
home or not. These semantic relations are learned using a logical rule miner
similar to the one we propose to use, however it learns Boolean rules. This is
a problem, because everything else is based on probabilistic inference: they do
not know the user is driving, they just infer it, possibly with a high probability.
This is exacerbated, because the rules themselves are learned, there is a chance
they are wrong, and thus come associated with some form of confidence value
that the rule is correct. We thus learn probabilistic rules, which account for the
inherent uncertainty in the domain.

4 Serendipitous Parking Recommendations

As a proof-of-concept implementation, we developed an application to find free
parking spaces and also help the user locate his parked car. We intended to ex-
ploit concepts of non-intentional interactions, pro-active recommendations, and
social connectedness. Figure 2 depicts the two screens in the wePark Application,
and an overview of its classifier: (i) a widget that collects data (accelerometer,
gyroscope, and GPS) on the background; (ii) the main screen that automatically
presents free parking spaces around the user’s location; and (iii) the classification
process, explained below.



(a) Widget showing number of avail-
able spots.

(b) Map display of
the available parking
spots.

Fig. 2. Prototype wePark application

The application works as depicted in Figure 3 . The widget operates au-
tonomously collecting (a) data samples and pre-process locally for noise filtering
and probabilistic activity recognition. Features are being extracted based on
acceleration data in the XY plane divided into nine regions, turns around the
Z-axis, clockwise or counter clockwise, movement speed, and movement dura-
tion. The application extracts the features using information fusion techniques,
followed by discretisation, yielding (b) a sequence of movement features. We
then apply a Conditional Random Fields (CRF) model to classify the sequence
of features into (c) probabilities of parking movement events.

Once the application collects a sufficient amount of data, the information
is grouped and labelled to know which clusters are movements corresponding
parking movements. These events are communicated to a server-based applica-
tion that: stores these events in repository of activity patterns, so that the server
knows where the parking spaces are being freed up/occupied; and executes the
probabilistic situation modelling to create the global context considering the
relation between events across multiple users.

When the user taps on the wePark widget, it opens the (ii) main screen
(Figure 2 (ii)) that queries the server-based component about free parking spaces
around the current location. Moreover, the widget also detects walking patterns
and when the user is wandering around the area where his car is parked, the
application notifies the user, providing direction information where his car is
parked.



Fig. 3. Processing context signals for recognizing parking movements. (a) is a sample
of sensor data, varying over time, collected from a 9DOF IMU, (b) shows the feature
set that we extract from this data, and (c) the probability for each of the potential
labels of this sample.



5 Discussion

We seek a new kind of user experience, understanding user activities and de-
livering relevant information pro-actively. We expect that these developments
will improve the quality of mobile applications with a new paradigm of user ex-
perience. In this paper, we present our work towards Big Context and support
to serendipitous recommendations using our Platform for Sensible Lives. Nev-
ertheless, these methods come at a cost. Firstly, it is necessary to collect and
maintain the database of raw contextual data required to discover contextual
patterns. Secondly, it requires local processing and continuous access to sen-
sors, which in the case of mobile devices implies in battery utilisation. There
are technical solutions to mitigate this problem, such as SAMSUNG Software
Development Kits (SDKs) for the latest device technologies (viz. Galaxy S5 and
Samsung Gear 2), which includes the “Motion package” with features for con-
tinuous sensor monitoring with low power technology.

The development of Big Context and serendipitous interfaces is still exper-
imental. We have ideas about initial applications, as described in this paper,
and how to move forward with them. Nevertheless, the concept of Big Context
is larger than the applications we can conceive of at this early stage. In future
work we will refine the method of situation modelling, aiming to provide bet-
ter support to group support in applications that relate context events across
multiple users. Moreover, we will further develop the technology for semantic
context classification, aiming at support to social connectedness by supporting
applications that analyse patterns at a social level where people use their devices
differently depending on their social environment.
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