
Recognition and Recommendation of
Parking Places

Andrew Koster, Allysson Oliveira, Orlando Volpato, Viviane Delvequio and
Fernando Koch

SAMSUNG Research Institute
{andrew.k, allysson.o, orlando.f, v.franco, fernando.koch}@samsung.com

Abstract. Current solutions to recommend available parking spaces
rely on options like: intentional user feedback; installing data collectors
in volunteering fleet vehicles, or; installing static sensors to monitor avail-
able parking spaces. In this paper we propose a solution based application
that runs on commodity smartphones and makes use of the advanced sen-
sor capabilities in these devices, along with methods of statistical anal-
ysis of the collected sensor data to provide useful recommendations. We
exploit a combination of k-medoid clustering and Conditional Random
Fields to reliably detect a user parking with a limited sensor capabil-
ity. Next, we outline a method based on Markov Chains to calculate
the probability of finding a parking space near a given location. We also
enhance the solution with more sensor capability to discover desirable
properties in parking spaces.

1 Introduction

Finding parking spaces in big cities is aggravating. Reports indicate that from
30% to 40% of light vehicle traffic is made up of drivers actually searching for a
free parking space [3]. This represents a lot of wasted time and fuel, and increased
emissions of pollutant and green-house gases.

Current solutions to indicate available parking spaces rely on orthodox ap-
proaches like: a) intentional user feedback, i.e. tapping a button to indicate an
available parking space; b) installing sensors, and its corresponding processing
equipment in volunteering fleet vehicles, like taxi drivers, to detect available
parking spaces; or c) installing sensors and/or cameras on the parking lots with
an associated system to process those signals.

We introduce an alternative solution consisting of a mobile app to automat-
ically detect that the user is parking, and a server-based system to recommend
available parking spaces. This solution is grounded on the concept of serendipi-
tous recommendation: that is, providing useful and pleasant information based
on automatically collected environmental data and some form of understanding
of users’ demands. Exemplary solutions are SAMSUNG S-Health1 and Google
Now2.
1 http://content.samsung.com/us/contents/aboutn/sHealthIntro.do
2 http;//www.google.com/landing/now/



In our case, we developed new models of statistical analysis of smartphone’s
sensor data to detect salient movement signature such as “leaving a parking
space” or “entering a park space”. The mobile app performs statistical analysis
upon sensor data and, once these signatures are detected, notifies the Parking
Space Recommender server. The new information is stored in a repository, which
in turn is used to calculate the probability of available spots, when this is re-
quested. Simultaneously the recognized movement signature is evaluated in the
app, to improve the recognition algorithm, and adapt it to better function in
the user’s context. By collecting historic parking information, contextualized by
geographic region, calendar day, time of day, weather condition, ephemerides,
real time traffic information and special events; a model can be built to predict
free parking spaces generation and consumption rates.

Finally, we describe how our app presents the information about a parking
space: along with the information about availability of spaces, we collect infor-
mation about the desirability of these spaces. For instance, how far is it from
the user’s destination, does it have shade, or a street lamp, and any additional
problems in the area. In Figure 1 we give an overview of how the system works.
In the following, we describe the various computational methods used to achieve
this.

Fig. 1. Functional overview: (a) movements are automatically recognised and (b) no-
tifications sent to a cloud-based service, which groups and classifies information from
many devices; (c) the service is able to identify nearby available parking spaces to reply
to users’ geolocated requests.



2 Related Work

There are many systems envisioned to inform and manage available parking
spaces in a context of smart city. Generally these require the installation of
sensors as part of a city’s infrastructure. Some of them are based on installing
sensors on every parking space to detect directly whether there is a parked vehicle
or not [10,13], which places a large demand on standardisation of sensors, data
collection and processing equipment. Moreover, it demands a large monetary
investment on procurement, installation and maintenance.

Other solutions use a fleet of voluntary vehicles to detect parking occupancy.
Suhr et al. [16] proposes a free parking space detection system by using a fish-eye
camera installed on the rear end of a vehicle to detect available spots when a
user drives by them. Mathur et al. [9] describe a system for detection of available
parking spaces by having a fleet of vehicles equipped with ultrasonic sensors in
the vehicle’s passenger door, which detects available spaces on the street. These
solutions demand the use of dedicated equipment to be installed on vehicles
that should be continuously passing on most of the streets. They are intended
mostly for detecting street parking, as the vehicles are not meant to go to inside
parking lots. However, these solution imply capital expenditure and continuous
operation costs to fleets of vehicles such as taxi or buses, who are not the primary
consumers of the product.

Rather than explicitly instrumenting the city, some solutions envision that
the citizens report free parking spaces. Some require intentional action by the
user, for instance, by tapping a button on their mobile phone’s application indi-
cating that they parked, or just left, a parking space [4,6]. Google’s “Open Spot”
application [4] continuously shows vacant parking spaces in a 1 mile radius of
the user’s location. The availability of parking spaces should be indicated as the
user enters or leaves a space. This application did not become popular because
it required the intentional action of the user, despite a system of points intended
to incentivise the use of the system [12]. Instead, the recognition of a parking
space should be automatic, as suggested in “PhonePark” [15], which uses, in
addition to other things, GPS location and the connection/disconnection of the
Smartphone with the Bluetooth based hands free system of the vehicle. The
main disadvantage of this approach is that not all vehicles have a hands free
system, especially in Brazil, where most of the fleet is composed of low technol-
ogy content vehicles. For recognizing parking spaces we use a system similar to
the Phonepark System, but make less assumptions on the available technology.
In order to recognize a parking space, we require an accelerometer, a gyroscope
and some method of sensing location (whether it be through triangulation in the
cellphone grid, or GPS). However, our system builds upon these reports by us-
ing statistical machine learning techniques to better report the available parking
spaces.



3 Detecting Parking Spaces

Whilst various methods are able to distinguish between different activities [7,14],
they are not sufficiently precise to recognise parking movements. For instance, in
commercially available software, the SAMSUNG Motion package in the Mobile
SDK3 recognises an elevator as a vehicle, which is clearly a problem: if we were
to use the mode change from walking to vehicular transport and vice versa to
recognise parking spaces, this would result in a large number of false positives.
A second problem with the state-of-the-art is that they rely on labelled data.
While this is fairly easy to obtain for rough categories like transportation mode,
more detailed activities are harder to label manually, and of the data we have
obtained, only a small part is unreliably labelled, whereas the rest is entirely
unlabelled.

In order to deal with these shortcomings, we propose to combine the recog-
nition of rough categories, such as changes in transportation mode, with what
we call “parking signatures”. In Figure 2 we have graphed a typical signature we
captured for a park-out manoeuvre, reconstructed from accelerometer and gy-
roscope data. The motion is normalised to start at (0, 0) in the north direction.
It is easy to see that the car reversed out, turned, and drove away. While not
all moves are as easy to recognise visually, all park-out manoeuvres have, as a
bare minimum, in common that they start from standstill, and accelerate in the
XY-plane. Nevertheless, this description also includes other movements, such as
starting from a traffic light, and if we do not take initial velocity into account
(which must be computed, rather than sensed directly) these signatures may be
confused with a host of other signatures, such as going around a corner.

Fig. 2. Reconstruction of the car’s position in the XY-plane over time.

3 http://developer.samsung.com/samsung-mobile-sdk



Rather than attempting to describe all potential movements manually in
a rule-based system, we use machine learning. In specific, we use k-medoids
[5], an unsupervised learning algorithm, to cluster a set of mostly unlabelled
sensor readings, collected by volunteer motorists. As a distance measure we use
Dynamic Time Warping (DTW) [11], a well-known distance measure for time
series data that, despite its age, is still among the most accurate measures [1].

While there are other learning algorithms that work with unlabelled data,
the most common are clustering algorithms. These algorithms aim to group
together similar samples, while maintaining the groupings themselves as distinct
as possible. Out of the possible clustering algorithms we choose to use k-medoids,
because almost all other algorithms rely on a method for calculating a central
point for each cluster. This is a notoriously hard problem for time series data,
and an initial experiment using k-means and the arithmetic mean of the points
in a cluster led to unsatisfactory results: often the algorithm would not even
converge. k-medoids avoids entirely the calculation of a central point by choosing
the most central of the data points as the representative of the cluster.

Based on preliminary research, we found that the best results are obtained
with k = 50, with a Davies-Bouldin index of 0.066 (in comparison, with just 5
clusters, the best Davies-Bouldin index obtained was 0.209). The labelled sam-
ples we have serve to label each cluster as containing park-in manoeuvres, park-
out manoeuvres or other manoeuvres. The result is a large collection of labelled
movement signatures. These, in turn are used as input to train a Conditional
Random Field (CRF) [8] model to recognise new series of sensor readings in
real-time. By using cross-validation, we can test the CRF part, however this
does not truly test whether the label assignment by the clustering algorithm
was performed correctly. As such, sufficiently testing the classifier requires the
composition of a set of labelled data, and will be performed when the park-
ing app goes into beta testing: it will include a button to give feedback about
whether a manoeuvre was recognised correctly by the algorithm, thus providing
labelled samples.

4 Reporting Probable Spaces

Detected parking spaces are reported by the app to the server, which collects
both current, and historic data about parking spaces. When an app requests
information about available spaces, it reports the central location, around which
a space should be found. This can be the user’s current location, or anticipating
the user travelling, his or her destination. The server performs two computations.
Based on historic data, and using a Bayesian approach, it computes the distance
around the point for which the probability of finding a parking spot at the given
time is sufficiently high. Secondly, for the actual known spaces that are within
the calculated distance, the probability of them in fact being free, given their last
reported status, at the given time is calculated using a Hidden Markov Model.



4.1 Calculating parking distance

The historic data that is collected on the server can be interpreted as a time series
for each individual parking space. In an ideal scenario, the sensor readings would
be perfect, and would give a record of when any parking space was occupied
or not, and we could use this to calculate the probability of the space being
available, based on its availability at similar times in the past. However, in reality,
the data will be very sparse, and we will be missing data for many parking spaces,
and for those we do have data it may be updated infrequently: not everybody (or
even most people) use the app, and even those that do may switch it off. It is thus
important to assume (very) incomplete information regarding the availability of
parking spaces in an area.

We solve this, by calculating a distance threshold, for which the expectation
of finding a parking space is above a configurable probability threshold. Algo-
rithm 1 computes this. For each distance, the algorithm collects all the historic
sensor readings within range, and calculates for each location the probability
that it is occupied using the beta probability distribution, and a hill-climbing
method is used to find the optimum distance. For any location (or parking space),
we generate the entire time series, by simply assuming that each reading is the
status for the entire time period until the next reading. We discretise time and
use the maximum likelihood estimation to calculate the parameters of a beta
probability distribution for whether or not a position is occupied. Due to the
law of large numbers, with sufficient readings, the errors from having sparse data
will average out; hence the need to average over an area, rather than considering
each parking space individually.

Fig. 3. Probabilities of a parking space being free.

We tested the efficacy of the estimator of availability using the data set from
the NYC Department of Traffic 4, averaged over 15 minute time windows during
a day. The results are plotted in Fig. 3 and have a Pearson correlation coefficient
of 0.57.

4 http://www.nyc.gov/html/dot/html/motorist/realtimeparking.shtml



Algorithm 1: ParkingDistance

Input: Historic sensor readings of parking spaces, central location
Input: Probability threshold that is required
Result: Minimum distance from central location within which there is an

available parking space with probability above the threshold

tested ←− ∅
distance ←− initialdistance
repeat

tested ←− tested ∪ {distance}
Readings ←− getDataWithinRange(distance)
probability ←− 1.0
for location ∈ getLocations(Readings) do

probOccupied ←−
BetaDistrib(Readings.at(location))

probability ←− probability * probOccupied

if probability > threshold then
distance ←− getNearer(distance)

else
distance ←− getFarther(distance)

until (1− probability) > threshold ∧ distance ∈ tested

4.2 Calculating parking space probability

After finding a region for which the probability is sufficiently high, we can further
help the user by computing the actual probability of the known parking spaces
being available, given their last known status. For this, we use a Hidden Markov
Model (HMM) [2] to model the conditional probability that a space is occupied,
given its last known status, and the time of day. To learn the HMM, we consider
all spaces, and thus all readings within the area as sufficiently similar, in order to
give sufficient data for the parameter estimation. For the time-of-day we consider
15-minute intervals, and for the time since the last report, we consider anything
longer than 30 minutes previous as ”long ago”. This gives us a space of 60× 96
possible values for the observable signals, and 2 possible labels (occupied, or
free) for the target. An example of a data point is:

(reported occupied 23 minutes ago, 13:00-13:15) → occupied.
The parking spaces with a sufficient probability of being free are sent to the

app for reporting to the user.

5 Recommending Desirable Spaces

Finally, the mobile app provides parking recommendations using the data above.
Available parking spaces are colour coded according to the estimated probability
of them being free, and upon selecting any one of them, additional information
is displayed: the estimated traffic density, and if a destination is provided, the
time to walk there from the parking space is given. Note that this destination is



Fig. 4. Light, in lumens, upon exiting the car when parked in varying situations.

not necessarily input by the user, but can be inferred from historical data about
the user’s behaviour, or extracted from his calendar.

Moreover, the system learns whether a parking space has shade during the
day and light at night. As with the rest of the app, this data is also collected
without needing any action from the user beyond normal use of his or her smart-
phone. When a parking signature is detected, as described in Section 2, the
smartphone’s photometer is activated. A rule-based system is used to detect
whether the spot is shady or sunny during the day, and illuminated or dark
during night-time. In Fig. 4 we graphed the luminosity readings for exiting the
car in a sunny spot, and exiting the car in a shady spot. While the rules require
more sophistication, depending on the time-of-day, weather, season, and location
to estimate how big a jump in luminosity triggers a positive reading for either
sunny or shady, the graph shows how to go about it. The rule-based system can
additionally fuse data from other sensors; for instance, by using the proximity
sensor to distinguish between dark of night and it being dark because the mobile
phone is in the user’s pocket.

This information is sent to the server, and maximum likelihood estimation is
used to obtain the most likely situation. When searching for a spot, this situation
is displayed. Screenshots of the mobile app are in Fig. 5.

We apply special interface marks to represent different park space categories,
e.g. green dots for regular spaces and blue stars for recommended spaces. Cur-
rently we just choose the most likely to be free, but an extension of the app
is to learn from user behaviour, and recommend spaces according to his or her
preferences: for instance, if the user prefers to park slightly further away, but in
a shady spot, this can be taken into account.



(a) Map display of the available park-
ing spots, and the number of parking
spots within range.

(b) Display with details for the selected
parking spot.

Fig. 5. Screenshots of the parking recommender app.



6 Conclusion and Future Work

In this paper we present a serendipitous solution to finding parking spaces: our
vision is that this app works seamlessly with the user to collect and provide
information when required without intruding or interrupting his or her day-
to-day rhythm. The information is collected automatically when a park-in or
park-out event is recognized using the activity recognition method we presented
in Section 3, it is processed intelligently to calculate, as accurately as possible,
the availability of parking spaces, and is reported to users who are detected to
be searching, or will soon be needing, a parking spot.

The system is currently entering the last stages of development, and will soon
enter alpha testing, when we will extensively test the algorithms developed in
internal experiments. In particular this will serve to fine-tune our recognition
algorithm and start populating our repository of historical parking data. While
our current focus is on rolling out this service as fast as possible, in order to
collect more data and better train our algorithms, we realise that the usability
of the app should be at the forefront. Therefore there are already a number of
improvements planned for its use in a car.

Because the app is meant to be used in a car, it is necessary to minimise the
need to fiddle with the phone. The app will respond to voice commands, and in
addition to the map interface of Fig. 5a, it will output suggestions and directions
using spoken language. Additionally, we intend to use a similar system to the
one outlined in Section 3 to predict that a user is looking for a parking space.
Search patterns are fairly typical and we expect that a similar approach will
allow us to recognise these. Furthermore, if the user’s routines are known, or
he has saved appointment locations in his agenda, we can use this information
to predict when and where a user will search for a space. Any one of these
approaches will trigger the app to ask the user if he is indeed in need of a free
space (in spoken language), and upon confirmation, display the available spaces
and guide the user to the best one. In this scenario, the user does not have to
touch his phone, or even look at it, to get the desired functionality.

Moreover, the method we use to calculate the expected distance for finding
a parking space in Section 4.1 can be used in anticipation to help users to plan
for future decisions. The service can estimate how many free spaces will be
available for an area, given a time period and date. When users are planning
their day, they can obtain information about the availability of parking. For
instance, they might have their lunch break slightly earlier to avoid parking
hassles near a restaurant, or take such information into account when planning
meetings. Additionally, city planners could use this information to easily see
where parking problems are greatest and plan new projects accordingly.

As next steps, we are looking at reinforcement learning techniques [17] to
adapt the general model described in Section 3 to detect a user’s parking signa-
ture. Every person has different ways of doing things, and this is no different for
driving. We thus expect that by adapting the parameters of the learned graphical
model to the user’s behaviour will lead to a more accurate classifier.



References

1. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proceedings of the VLDB Endowment 1(2) (2008) 1542–1552

2. Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov Models. Springer, Heidel-
berg, DE (1995)

3. Gallivan, S.D.: IBM global parking survey: Drivers share worldwide parking woes.
Technical report, IBM (2011)

4. Hildenbrand, J.: Google releases open spot for android — find and share parking
(July 10 2010) http://www.androidcentral.com/googl-releases-open-spot-android-
find-and-share-parking retrieved June 24, 2013.

5. Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Statistical Data
Analysis Based on the L1 Norm and Related Methods. Springer, Amsterdam, NL
(1987) 405–416

6. Koster, A., Koch, F., Bazzan, A.L.C.: Incentivising crowdsourced parking solu-
tions. In Nin, J., Villatoro, D., eds.: Citizen in Sensor Networks (CITISEN’14).
Volume 8313 of LNAI. Springer (2014) 36–43

7. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. ACM SIGKDD Explorations Newsletter 12(2) (2010) 74–82

8. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: ICML, San Francisco,
CA, USA, Morgan Kaufmann (2001) 282–289

9. Mathur, S., Tong, J., Kasturirangan, N., Chandrasekaran, J., Xue, W., Gruteser,
M., Trappe, W.: ParkNet: drive-by sensing of road-side parking statistics. In: Proc.
of MobiSys ’10, ACM (2010) 123–136

10. Park, W.J., Kim, B.S., Kim, D.S., Lee, K.H.: Parking space detection using ul-
trasonic sensor in parking assistance system. In: proc. of the IEEE Intelligent
VEhicles Symposium, IEEE (2008) 1039–1044

11. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing
26(1) (1978) 43–49

12. Sherwin, I.: Google Labs’ Open Spot: A useful application that no one uses
(July 10 2011) http://www.androidauthority.com/google-labs-open-spot-a-useful-
application-that-no-one-uses-15186/ retrieved May 15, 2014.

13. Srikanth, S., Pramod, P.J., Dileep, K.P., Tapas, S., Patil, M.U., Sarat, C.B.N.:
Design and implementation of a prototype smart PARKing (SPARK) system using
wireless sensor networks. In: Proceedings of the Advanced Information Networking
and Applications Workshops (WAINA ’09). (2009) 401–406

14. Stenneth, L., Wolfson, O., Xu, B., Yu, P.S.: Transportation mode detection using
mobile phones and GIS information. In: Proc. of the 19th ACM SIGSPATIAL
International Converence on Advances in Geographic Information Systems, ACM
(2011) 54–63

15. Stenneth, L., Wolfson, O., Xu, B., Yu, P.S.: PhonePark: Street parking using
mobile phones. In: Proceedings of the 13th IEEE International Conference on
Mobile Data Management (MDM ’12), IEEE (2012) 278–279

16. Suhr, J.K., Jung, H.G., Bae, K., Kim, J.: Automatic free parking space detection
by using motion stereo-based 3D reconstruction. Machine Vision and Applicatons
21(2) (2010) 163–176

17. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press
(1998)


